Full metadata record
DC FieldValueLanguage
dc.contributor.authorYeh, Chao-Huien_US
dc.contributor.authorLiang, Zheng-Yongen_US
dc.contributor.authorLin, Yung-Changen_US
dc.contributor.authorWu, Tien-Linen_US
dc.contributor.authorFan, Taen_US
dc.contributor.authorChu, Yu-Chenen_US
dc.contributor.authorMa, Chun-Haoen_US
dc.contributor.authorLiu, Yu-Chenen_US
dc.contributor.authorChu, Ying-Haoen_US
dc.contributor.authorSuenaga, Kazutomoen_US
dc.contributor.authorChiu, Po-Wenen_US
dc.date.accessioned2018-08-21T05:52:48Z-
dc.date.available2018-08-21T05:52:48Z-
dc.date.issued2017-10-18en_US
dc.identifier.issn1944-8244en_US
dc.identifier.urihttp://dx.doi.org/10.1021/acsami.7b10892en_US
dc.identifier.urihttp://hdl.handle.net/11536/143966-
dc.description.abstractAtomically thin two-dimensional (2D) materials have attracted increasing attention for optoelectronic applications in view of their compact, ultrathin, flexible, and superior photosensing characteristics. Yet, scalable growth of 2D heterostructures and the fabrication of integrable optoelectronic devices remain unaddressed. Here, we show a scalable formation of 2D stacks and the fabrication of phototransistor arrays, with each photosensing element made of a graphene-WS2 vertical heterojunction and individually addressable by a local top gate. The constituent layers in the heterojunction are grown using chemical vapor deposition in combination with sulfurization, providing a clean junction interface and processing scalability. The aluminum top gate possesses a self-limiting oxide around the gate structure, allowing for a self-aligned deposition of drain/source contacts to reduce the access (litigated) channel regions and to boost the device performance. The generated photo current, inherently restricted by the limited optical absorption cross section of 2D materials, can be enhanced by 2 orders of magnitude by top gating. The resulting photoresponsivity can reach 4.0 A/W under an illumination power density of 0.5 mW/cm(2), and the dark current can be minimized to few picoamperes, yielding a low noise-equivalent power of 2.5 x 10(-16) W/Hz(1/2). Tailoring 2D heterostacks as well as the device architecture moves the applications of 2D-based optoelectronic devices one big step forward.en_US
dc.language.isoen_USen_US
dc.subjectWS2en_US
dc.subjectgrapheneen_US
dc.subjecttwo-dimensional materialsen_US
dc.subjectheterostructureen_US
dc.subjectphotoresponsivityen_US
dc.titleScalable van der Waals Heterojunctions for High-Performance Photodetectorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1021/acsami.7b10892en_US
dc.identifier.journalACS APPLIED MATERIALS & INTERFACESen_US
dc.citation.volume9en_US
dc.citation.spage36181en_US
dc.citation.epage36188en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000413503700070en_US
Appears in Collections:Articles