Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Yi-Chiaen_US
dc.contributor.authorLee, Ming-Yien_US
dc.contributor.authorLi, Yimingen_US
dc.contributor.authorSamukawa, Seijien_US
dc.date.accessioned2018-08-21T05:52:50Z-
dc.date.available2018-08-21T05:52:50Z-
dc.date.issued2017-11-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2017.2755069en_US
dc.identifier.urihttp://hdl.handle.net/11536/143992-
dc.description.abstractWe studied the miniband dependence on the structural parameters and shape in type-II multilayer germanium (Ge)/silicon (Si) quantum dot superlattice (QDSL) solar cell. A maximum tunable range of ground-state energy is 19% by tuning layer distance down to 0.5 nm, whereas 24.5% is achieved by adjusting the horizontal dot-to-dot spacing down to 0.3 nm. The reduction of effective bandgap is severe for cylindrical QDs than ellipsoidal and conical QDs in the ultradense QDSL, thus leading to a relatively lower conversion efficiency. On average, the thickness of QD shows a negative correlation to conversion efficiency. We observed a high conversion efficiency of 27.22% in a bilayer conical QDSL under an AM1.5 spectral irradiance and one sun illumination.en_US
dc.language.isoen_USen_US
dc.subjectConversion efficiencyen_US
dc.subjectdensity of states (DoSs)en_US
dc.subjectGe/Si quantum dot (QD)en_US
dc.subjectlayer distanceen_US
dc.subjectminibandsen_US
dc.subjectmultilayeren_US
dc.subjectsolar cellen_US
dc.subjectsuperlatticeen_US
dc.titleDesign and Simulation of Intermediate Band Solar Cell With Ultradense Type-II Multilayer Ge/Si Quantum Dot Superlatticeen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2017.2755069en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume64en_US
dc.citation.spage4547en_US
dc.citation.epage4553en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000413732500026en_US
Appears in Collections:Articles