Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Te-Chihen_US
dc.contributor.authorKuo, Yueen_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorChen, Min-Chenen_US
dc.contributor.authorChen, Hua-Maoen_US
dc.date.accessioned2018-08-21T05:52:51Z-
dc.date.available2018-08-21T05:52:51Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn0021-4922en_US
dc.identifier.urihttp://dx.doi.org/10.7567/JJAP.56.120303en_US
dc.identifier.urihttp://hdl.handle.net/11536/144021-
dc.description.abstractElectrical characteristics of the dual-gate amorphous indium gallium zinc oxide thin-film transistors have been studied. Compared with the traditional bottom gate thin film transistor, the dual-gate structure has a larger on-current and a smaller threshold voltage shift because of the formation of an additional carrier channel and the depletion of the semiconductor layer. The top gate-to-channel barrier height is critical to threshold voltage and the stability of the thin film transistor. The complete overlap between the top gate and the channel region is important for the top channel function, which warrants the large on-current and low threshold slope shift. Therefore, the top gate design is critical to the performance and stability of the dual-gate thin film transistor. (C) 2017 The Japan Society of Applied Physicsen_US
dc.language.isoen_USen_US
dc.titleStability of double gate amorphous In-Ga-Zn-O thin-film transistors with various top gate designsen_US
dc.typeArticleen_US
dc.identifier.doi10.7567/JJAP.56.120303en_US
dc.identifier.journalJAPANESE JOURNAL OF APPLIED PHYSICSen_US
dc.citation.volume56en_US
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000414292400002en_US
Appears in Collections:Articles