完整後設資料紀錄
DC 欄位語言
dc.contributor.authorKumar, Nageshen_US
dc.contributor.authorKumar, Amiten_US
dc.contributor.authorHuang, Guan-Minen_US
dc.contributor.authorWu, Wen-Weien_US
dc.contributor.authorTseng, Tseung Yuenen_US
dc.date.accessioned2018-08-21T05:53:08Z-
dc.date.available2018-08-21T05:53:08Z-
dc.date.issued2018-03-01en_US
dc.identifier.issn0169-4332en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.apsusc.2017.10.095en_US
dc.identifier.urihttp://hdl.handle.net/11536/144303-
dc.description.abstractMorphology and synergistic effect of constituents are the two very important factors that greatly influence the physical, chemical and electrochemical properties of a composite material. In the present work, we report the enhanced electrochemical performance of mesoporous NiFe2O4 and multiwall carbon nanotubes (MWCNTs) nanocomposites synthesized via hexamethylene tetramine (HMT) assisted one-pot hydrothermal approach. The synthesized cubic phase spinel NiFe2O4 nanomaterial possesses high specific surface area (148 m(2)g(-1)) with narrow mesopore size distribution. The effect of MWCNTs addition on the electrochemical performance of nanocomposite has been probed thoroughly in a normal three electrode configuration using 2 M KOH electrolyte at room temperature. Experimental results show that the addition of mere 5 mg MWCNTs into fixed NiFe2O4 precursors amount enhances the specific capacitance up to 1291 Fg(-1) at 1 Ag-1, which is the highest reported value for NiFe2O4 nanocomposites so far. NiFe2O4/CNT nanocomposite exhibits small relaxation time constant (1.5 ms), good rate capability and capacitance retention of 81% over 500 charge-discharge cycles. This excellent performance can be assigned to high surface area, mesoporous structure of NiFe2O4 and conducting network formed by MWCNTs in the composite. Further, to evaluate the device performance of the composite, an asymmet-ric pseudocapacitor has been designed using NiFe2 04/CNT nanocomposite as a positive and N-doped graphene as a negative electrode material, respectively. Our designed asymmetric pseudocapacitor gives maximum energy density of 23 W h kg(-1) at power density of 872W kg(-1). These promising results assert the potential of synthesized nanocomposite in the development of efficient practical high-capacitive energy storage devices. (C) 2017 Published by Elsevier B.V.en_US
dc.language.isoen_USen_US
dc.subjectPseudocapacitoren_US
dc.subjectMesoporousen_US
dc.subjectNiFe2O4en_US
dc.subjectMWCNTsen_US
dc.subjectAsymmetric supercapacitoren_US
dc.titleFacile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apsusc.2017.10.095en_US
dc.identifier.journalAPPLIED SURFACE SCIENCEen_US
dc.citation.volume433en_US
dc.citation.spage1100en_US
dc.citation.epage1112en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000418883800134en_US
顯示於類別:期刊論文