標題: A Reconfigurable Streaming Deep Convolutional Neural Network Accelerator for Internet of Things
作者: Du, Li
Du, Yuan
Li, Yilei
Su, Junjie
Kuan, Yen-Cheng
Liu, Chun-Chen
Chang, Mau-Chung Frank
交大名義發表
國際半導體學院
National Chiao Tung University
International College of Semiconductor Technology
關鍵字: Convolution neural network;deep learning;hardware accelerator;IoT
公開日期: 1-一月-2018
摘要: Convolutional neural network (CNN) offers significant accuracy in image detection. To implement image detection using CNN in the Internet of Things (IoT) devices, a streaming hardware accelerator is proposed. The proposed accelerator optimizes the energy efficiency by avoiding unnecessary data movement. With unique filter decomposition technique, the accelerator can support arbitrary convolution window size. In addition, max-pooling function can be computed in parallel with convolution by using separate pooling unit, thus achieving throughput improvement. A prototype accelerator was implemented in TSMC 65-nm technology with a core size of 5 mm(2). The accelerator can support major CNNs and achieve 152GOPS peak throughput and 434GOPS/W energy efficiency at 350 mW, making it a promising hardware accelerator for intelligent IoT devices.
URI: http://dx.doi.org/10.1109/TCSI.2017.2735490
http://hdl.handle.net/11536/144369
ISSN: 1549-8328
DOI: 10.1109/TCSI.2017.2735490
期刊: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS
Volume: 65
起始頁: 198
結束頁: 208
顯示於類別:期刊論文