Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorHwang, Hsien-Kueien_US
dc.date.accessioned2018-08-21T05:53:14Z-
dc.date.available2018-08-21T05:53:14Z-
dc.date.issued2017-12-01en_US
dc.identifier.issn0021-9002en_US
dc.identifier.urihttp://dx.doi.org/10.1017/jpr.2017.56en_US
dc.identifier.urihttp://hdl.handle.net/11536/144429-
dc.description.abstractWe study the size and the external path length of random tries and show that they are asymptotically independent in the asymmetric case but strongly dependent with small periodic fluctuations in the symmetric case. Such an unexpected behavior is in sharp contrast to the previously known results on random tries, that the size is totally positively correlated to the internal path length and that both tend to the same normal limit law. These two dependence examples provide concrete instances of bivariate normal distributions (as limit laws) whose components have correlation either zero or one or periodically oscillating. Moreover, the same type of behavior is also clarified for other classes of digital trees such as bucket digital trees and Patricia tries.en_US
dc.language.isoen_USen_US
dc.subjectRandom triesen_US
dc.subjectcovarianceen_US
dc.subjecttotal path lengthen_US
dc.subjectPearson's correlation coefficienten_US
dc.subjectasymptotic normalityen_US
dc.subjectPoissonizationen_US
dc.subjectde-Poissonizationen_US
dc.subjectintegral transformen_US
dc.subjectcontraction methoden_US
dc.titleDEPENDENCE BETWEEN PATH-LENGTH AND SIZE IN RANDOM DIGITAL TREESen_US
dc.typeArticleen_US
dc.identifier.doi10.1017/jpr.2017.56en_US
dc.identifier.journalJOURNAL OF APPLIED PROBABILITYen_US
dc.citation.volume54en_US
dc.citation.spage1125en_US
dc.citation.epage1143en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000423299800009en_US
Appears in Collections:Articles