完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, Zhen-Chun | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Huang, Kuo-Ching | en_US |
dc.date.accessioned | 2018-08-21T05:53:16Z | - |
dc.date.available | 2018-08-21T05:53:16Z | - |
dc.date.issued | 2018-02-01 | en_US |
dc.identifier.issn | 1027-5487 | en_US |
dc.identifier.uri | http://dx.doi.org/10.11650/tjm/8093 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/144470 | - |
dc.description.abstract | An H -packing F of a graph G is a set of edge -disjoint subgraphs of G in which each subgraph is isomorphic to H. The leave L or the remainder graph L of a packing F is the subgraph induced by the set of edges of G that does not occur in any subgraph of the packing F. If a leave L contains no edges, or simply L = Phi, then G is said to be H -decomposable, denoted by H broken vertical bar G. In this paper, we prove a conjecture made by Chartrand, Saba and Mynhardt [13]: If G is a graph of size q(G) 0 (mod 3) and delta(G) >= 2, then G is H -decomposable for some graph H of size 3. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | graph decomposition | en_US |
dc.subject | H-decomposition | en_US |
dc.subject | packing | en_US |
dc.subject | H-packing | en_US |
dc.subject | maximum packing | en_US |
dc.subject | minimum leave | en_US |
dc.title | Pack Graphs with Subgraphs of Size Three | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.11650/tjm/8093 | en_US |
dc.identifier.journal | TAIWANESE JOURNAL OF MATHEMATICS | en_US |
dc.citation.volume | 22 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.epage | 15 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000424136600001 | en_US |
顯示於類別: | 期刊論文 |