完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Zhen-Chunen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorHuang, Kuo-Chingen_US
dc.date.accessioned2018-08-21T05:53:16Z-
dc.date.available2018-08-21T05:53:16Z-
dc.date.issued2018-02-01en_US
dc.identifier.issn1027-5487en_US
dc.identifier.urihttp://dx.doi.org/10.11650/tjm/8093en_US
dc.identifier.urihttp://hdl.handle.net/11536/144470-
dc.description.abstractAn H -packing F of a graph G is a set of edge -disjoint subgraphs of G in which each subgraph is isomorphic to H. The leave L or the remainder graph L of a packing F is the subgraph induced by the set of edges of G that does not occur in any subgraph of the packing F. If a leave L contains no edges, or simply L = Phi, then G is said to be H -decomposable, denoted by H broken vertical bar G. In this paper, we prove a conjecture made by Chartrand, Saba and Mynhardt [13]: If G is a graph of size q(G) 0 (mod 3) and delta(G) >= 2, then G is H -decomposable for some graph H of size 3.en_US
dc.language.isoen_USen_US
dc.subjectgraph decompositionen_US
dc.subjectH-decompositionen_US
dc.subjectpackingen_US
dc.subjectH-packingen_US
dc.subjectmaximum packingen_US
dc.subjectminimum leaveen_US
dc.titlePack Graphs with Subgraphs of Size Threeen_US
dc.typeArticleen_US
dc.identifier.doi10.11650/tjm/8093en_US
dc.identifier.journalTAIWANESE JOURNAL OF MATHEMATICSen_US
dc.citation.volume22en_US
dc.citation.spage1en_US
dc.citation.epage15en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000424136600001en_US
顯示於類別:期刊論文