完整後設資料紀錄
DC 欄位語言
dc.contributor.authorXu, Wenjunen_US
dc.contributor.authorXu, Yueen_US
dc.contributor.authorLee, Chia-Hanen_US
dc.contributor.authorFeng, Zhiyongen_US
dc.contributor.authorZhang, Pingen_US
dc.contributor.authorLin, Jiaruen_US
dc.date.accessioned2018-08-21T05:53:24Z-
dc.date.available2018-08-21T05:53:24Z-
dc.date.issued2018-02-01en_US
dc.identifier.issn1536-1284en_US
dc.identifier.urihttp://dx.doi.org/10.1109/MWC.2018.1700200en_US
dc.identifier.urihttp://hdl.handle.net/11536/144640-
dc.description.abstractWith the proliferation of heterogeneous wireless networks, classical information-theoretical methods can no longer provide accurate mathematical models to analyze the complicated network performance for the regulation and optimization of networks. The emerging landscape of big data and machine learning has provided a new paradigm for the design and optimization of intelligent wireless networks. In this article, a general architecture for data-cognition-empowered intelligent wireless networks is proposed. Characteristics of wireless data, the frequently used utilities for data cognition, and data cognition methods are discussed to depict the building blocks and challenges in the exploration of the architecture for data-cognition-empowered intelligent wireless networks.en_US
dc.language.isoen_USen_US
dc.titleDATA-COGNITION-EMPOWERED INTELLIGENT WIRELESS NETWORKS: DATA, UTILITIES, COGNITION BRAIN, AND ARCHITECTUREen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/MWC.2018.1700200en_US
dc.identifier.journalIEEE WIRELESS COMMUNICATIONSen_US
dc.citation.volume25en_US
dc.citation.spage56en_US
dc.citation.epage63en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000426796000010en_US
顯示於類別:期刊論文