Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, PHen_US
dc.contributor.authorWang, CHen_US
dc.contributor.authorShyu, JZen_US
dc.contributor.authorYu, HCen_US
dc.date.accessioned2014-12-08T15:20:21Z-
dc.date.available2014-12-08T15:20:21Z-
dc.date.issued2003-01-01en_US
dc.identifier.issn0040-1625en_US
dc.identifier.urihttp://dx.doi.org/10.1016/S0040-1625(01)00142-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/14467-
dc.description.abstractForecasting the production of technology industries is important to entrepreneurs and governments, but usually suffers from market fluctuation and explosion. This paper aims to propose a Litterman Bayesian vector autoregression (LBVAR) model for production prediction based on the interaction of industrial clusters. Related industries within industrial clusters are included into the LBVAR model to provide more accurate predictions. The LBVAR model possesses the superiority of Bayesian statistics in small sample forecasting and holds the dynamic property of the vector autoregression (VAR) model. Two technology industries in Taiwan, the photonics industry and semiconductor industry are used to examine the LBVAR model using a rolling forecasting procedure. As a result, the LBVAR model was found to be capable of providing outstanding predictions for these two technology industries in comparison to the autoregression (AR) model and VAR model. (C) 2002 Elsevier Science Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectproduction forecastingen_US
dc.subjectautoregression (AR)en_US
dc.subjectvector autoregression (VAR)en_US
dc.subjectBayesian vector autoregression (BVAR)en_US
dc.subjectindustrial clustersen_US
dc.titleA Litterman BVAR approach for production forecasting of technology industriesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/S0040-1625(01)00142-1en_US
dc.identifier.journalTECHNOLOGICAL FORECASTING AND SOCIAL CHANGEen_US
dc.citation.volume70en_US
dc.citation.issue1en_US
dc.citation.spage67en_US
dc.citation.epage82en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000180210200004-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000180210200004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.