完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorHsaio, Wen-Hoaren_US
dc.contributor.authorLin, Che-Yuanen_US
dc.date.accessioned2018-08-21T05:53:39Z-
dc.date.available2018-08-21T05:53:39Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1088-467Xen_US
dc.identifier.urihttp://dx.doi.org/10.3233/IDA-163332en_US
dc.identifier.urihttp://hdl.handle.net/11536/144979-
dc.description.abstractData exploration is essential to data analytics, especially when one is confronted with massive datasets. Clustering is a commonly used technique in data exploration, since it can automatically group data instances into a list of meaningful categories, and capture the natural structure of data. Traditional finite mixture model requires the number of clusters to be specified in advance of analyzing the data, and this parameter is crucial to the clustering performance. Chinese restaurant process (CRP) mixture model provides an alternative to this problem, allowing the model complexity to grow as more data instances are observed. Although CRP provides the flexibility to create a new cluster for subsequent data instances, one still has to determine the hyperparameter of the prior and the parameters for the base distribution in the likelihood part. This work proposes a non-parametric clustering algorithm based on CRP with two main differences. First, we propose to create a new cluster based on entropy of the posterior, whereas the CRP uses a hyperparameter to control the probability of creating a new cluster. Second, we propose to dynamically adjust the parameters of the base distribution according to the mean of the observed data owing to Chebyshev's inequality. Additionally, detailed derivation and update rules are provided to perform posterior inference with the proposed collapsed Gibbs sampling algorithm. The experimental results indicate that the proposed algorithm avoids to specify the number of clusters and works well on several datasets.en_US
dc.language.isoen_USen_US
dc.subjectNon-parametric modelen_US
dc.subjectexploratory learningen_US
dc.subjectentropyen_US
dc.subjectChinese restaurant processen_US
dc.subjectclusteringen_US
dc.titleBayesian exploratory clustering with entropy Chinese restaurant processen_US
dc.typeArticleen_US
dc.identifier.doi10.3233/IDA-163332en_US
dc.identifier.journalINTELLIGENT DATA ANALYSISen_US
dc.citation.volume22en_US
dc.citation.spage551en_US
dc.citation.epage568en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000432011700006en_US
顯示於類別:期刊論文