Full metadata record
DC FieldValueLanguage
dc.contributor.authorVegiraju, Sureshrajuen_US
dc.contributor.authorLin, Chih-Yuen_US
dc.contributor.authorPriyanka, Pragyaen_US
dc.contributor.authorHuang, Deng-Yien_US
dc.contributor.authorLuo, Xian-Lunen_US
dc.contributor.authorTsai, Hsiang-Chien_US
dc.contributor.authorHong, Shao-Huanen_US
dc.contributor.authorYeh, Chia-Jungen_US
dc.contributor.authorLien, Wei-Chiehen_US
dc.contributor.authorWang, Chien-Lungen_US
dc.contributor.authorTung, Shih-Huangen_US
dc.contributor.authorLiu, Cheng-Liangen_US
dc.contributor.authorChen, Ming-Chouen_US
dc.contributor.authorFacchetti, Antonioen_US
dc.date.accessioned2018-08-21T05:53:50Z-
dc.date.available2018-08-21T05:53:50Z-
dc.date.issued2018-07-11en_US
dc.identifier.issn1616-301Xen_US
dc.identifier.urihttp://dx.doi.org/10.1002/adfm.201801025en_US
dc.identifier.urihttp://hdl.handle.net/11536/145229-
dc.description.abstractFour soluble dialkylated tetrathienoacene (TTAR)-based small molecular semiconductors featuring the combination of a TTAR central core, pi-conjugated spacers comprising bithiophene (bT) or thiophene (T), and with/without cyanoacrylate (CA) end-capping moieties are synthesized and characterized. The molecule DbT-TTAR exhibits a promising hole mobility up to 0.36 cm(2) V-1 s(-1) due to the enhanced crystallinity of the microribbon-like films. Binary blends of the p-type DbT-TTAR and the n-type dicyanomethylene substituted dithienothiophene-quinoid (DTTQ-11) are investigated in terms of film morphology, microstructure, and organic field-effect transistor (OFET) performance. The data indicate that as the DbT-TTAR content in the blend film increases, the charge transport characteristics vary from unipolar (electron-only) to ambipolar and then back to unipolar (hole-only). With a 1:1 weight ratio of DbT-TTAR DTTQ-11 in the blend, well-defined pathways for both charge carriers are achieved and resulted in ambipolar transport with high hole and electron mobilities of 0.83 and 0.37 cm(2) V-1 s(-1), respectively. This study provides a viable way for tuning microstructure and charge carrier transport in small molecules and their blends to achieve high-performance solution-processable OFETs.en_US
dc.language.isoen_USen_US
dc.subjectambipolar charge transporten_US
dc.subjectblendsen_US
dc.subjectorganic field-effect transistorsen_US
dc.subjectsolution-shearingen_US
dc.subjecttetrathienoaceneen_US
dc.titleSolution-Processed High-Performance Tetrathienothiophene-Based Small Molecular Blends for Ambipolar Charge Transporten_US
dc.typeArticleen_US
dc.identifier.doi10.1002/adfm.201801025en_US
dc.identifier.journalADVANCED FUNCTIONAL MATERIALSen_US
dc.citation.volume28en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000437829800017en_US
Appears in Collections:Articles