Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Ming-Huien_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorShih, Chih-Chengen_US
dc.contributor.authorTseng, Yi-Tingen_US
dc.contributor.authorTsai, Tsung-Mingen_US
dc.contributor.authorZheng, Hao-Xuanen_US
dc.contributor.authorWu, Pei-Yuen_US
dc.contributor.authorHuang, Hui-Chunen_US
dc.contributor.authorChen, Wen-Chungen_US
dc.contributor.authorHuang, Jen-Weien_US
dc.contributor.authorMa, Xiao-Huaen_US
dc.contributor.authorHao, Yueen_US
dc.contributor.authorSze, Simon M.en_US
dc.date.accessioned2018-08-21T05:53:52Z-
dc.date.available2018-08-21T05:53:52Z-
dc.date.issued2018-08-01en_US
dc.identifier.issn1882-0778en_US
dc.identifier.urihttp://dx.doi.org/10.7567/APEX.11.084101en_US
dc.identifier.urihttp://hdl.handle.net/11536/145277-
dc.description.abstractNitrogen atoms were introduced into a Pt/HfO2/TiN resistance random-access memory (RRAM) device to improve the resistive switching characteristics induced by a high-pressure nitridation treatment. Compared with a similar untreated HfO2 device, it exhibited superior performance, including a lower forming voltage, a higher on/off ratio, and high-endurance cycle operations. Current-voltage curve-fitting results confirmed the difference of the carrier transport mechanisms after the nitridation treatment. Finally, a reaction model was proposed to explain the improvement of RRAM switching due to the introduction of nitrogen atoms. (C) 2018 The Japan Society of Applied Physicsen_US
dc.language.isoen_USen_US
dc.titlePerformance improvement after nitridation treatment in HfO2-based resistance random-access memoryen_US
dc.typeArticleen_US
dc.identifier.doi10.7567/APEX.11.084101en_US
dc.identifier.journalAPPLIED PHYSICS EXPRESSen_US
dc.citation.volume11en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000439141600001en_US
Appears in Collections:Articles