Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, CWSen_US
dc.contributor.authorLee, JCen_US
dc.date.accessioned2014-12-08T15:20:28Z-
dc.date.available2014-12-08T15:20:28Z-
dc.date.issued1997-09-01en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://hdl.handle.net/11536/14555-
dc.description.abstractThe primary aim of this paper is to select an appropriate power transformation when we use ARMA models for a given time series. We propose a Bayesian procedure for estimating the power transformation as well as other parameters in time series models. The posterior distributions of interest are obtained utilizing the Gibbs sampler, a Markov Chain Monte Carlo (MCMC) method. The proposed methodology is illustrated with two real data sets. The performance of the proposed procedure is compared with other competing procedures. (C) 1997 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectARMA modelsen_US
dc.subjectForecastingen_US
dc.subjectGibbs sampleren_US
dc.subjectMCMC methoden_US
dc.subjectpower transformationen_US
dc.titleOn selecting a power transformation in time-series analysisen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF FORECASTINGen_US
dc.citation.volume16en_US
dc.citation.issue5en_US
dc.citation.spage343en_US
dc.citation.epage354en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:A1997YD78100005-
dc.citation.woscount2-
Appears in Collections:Articles


Files in This Item:

  1. A1997YD78100005.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.