完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, CWSen_US
dc.contributor.authorLee, JCen_US
dc.date.accessioned2014-12-08T15:20:28Z-
dc.date.available2014-12-08T15:20:28Z-
dc.date.issued1997-09-01en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://hdl.handle.net/11536/14555-
dc.description.abstractThe primary aim of this paper is to select an appropriate power transformation when we use ARMA models for a given time series. We propose a Bayesian procedure for estimating the power transformation as well as other parameters in time series models. The posterior distributions of interest are obtained utilizing the Gibbs sampler, a Markov Chain Monte Carlo (MCMC) method. The proposed methodology is illustrated with two real data sets. The performance of the proposed procedure is compared with other competing procedures. (C) 1997 John Wiley & Sons, Ltd.en_US
dc.language.isoen_USen_US
dc.subjectARMA modelsen_US
dc.subjectForecastingen_US
dc.subjectGibbs sampleren_US
dc.subjectMCMC methoden_US
dc.subjectpower transformationen_US
dc.titleOn selecting a power transformation in time-series analysisen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF FORECASTINGen_US
dc.citation.volume16en_US
dc.citation.issue5en_US
dc.citation.spage343en_US
dc.citation.epage354en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:A1997YD78100005-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. A1997YD78100005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。