Full metadata record
DC FieldValueLanguage
dc.contributor.authorKuo, Len_US
dc.contributor.authorLee, Jen_US
dc.contributor.authorCheng, Pen_US
dc.contributor.authorPai, Jen_US
dc.date.accessioned2014-12-08T15:20:28Z-
dc.date.available2014-12-08T15:20:28Z-
dc.date.issued1997-03-01en_US
dc.identifier.issn0277-6693en_US
dc.identifier.urihttp://hdl.handle.net/11536/14559-
dc.description.abstractBayesian inference via Gibbs sampling is studied for forecasting technological substitutions. The Box-Cox transformation is applied to the time series AR(I) data to enhance the linear model fit. We compute Bayes point and interval estimates for each of the parameters from the Gibbs sampler. The unknown parameters are the regression coefficients, the power in the Box-Cox transformation, the serial correlation coefficient, and the variance of the disturbance terms. In addition, we forecast the future technological substitution rate and its interval. Model validation and model choice issues are also addressed. Two numerical examples with real data sets are given.en_US
dc.language.isoen_USen_US
dc.subjectAR(1)en_US
dc.subjectBox-Cox transformationen_US
dc.subjectMetropolis-within-Gibbs samplingen_US
dc.subjectmodel choiceen_US
dc.subjectpredictionen_US
dc.titleBayes inference for technological substitution data with data-based transformationen_US
dc.typeArticleen_US
dc.identifier.journalJOURNAL OF FORECASTINGen_US
dc.citation.volume16en_US
dc.citation.issue2en_US
dc.citation.spage65en_US
dc.citation.epage82en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:A1997WP38300001-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. A1997WP38300001.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.