Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsaio, Wen-Hoaren_US
dc.contributor.authorLiu, Chien-Liangen_US
dc.contributor.authorWu, Wei-Liangen_US
dc.date.accessioned2018-08-21T05:54:31Z-
dc.date.available2018-08-21T05:54:31Z-
dc.date.issued2017-05-01en_US
dc.identifier.issn0031-3203en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.patcog.2016.12.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/146061-
dc.description.abstractThis work devises a locality-constrained max-margin sparse coding (LC-MMSC) framework, which jointly considers reconstruction loss and hinge loss simultaneously. Traditional sparse coding algorithms use l(1) constraint to force the representation to be sparse, leading to computational expensive process to optimize the objective function. This work uses locality constraint in the framework to preserve information of data locality and avoid the optimization of l(1). The obtained representation can achieve the goal of data locality and sparsity. Additionally, this work optimizes coefficients, dictionaries and classification parameters simultaneously, and uses block coordinate descent to learn all the components of the proposed model. This work uses semi supervised learning approach in the proposed framework, and the goal is to use both labeled data and unlabeled data to achieve accurate classification performance and improve the generalization of the model. We provide theoretical analysis on the convergence of the proposed LC-MMSC algorithm based on Zangwill's global convergence theorem. This work conducts experiments on three real datasets, including Extended YaleB dataset, AR face dataset and Caltech101 dataset. The experimental results indicate that the proposed algorithm outperforms other comparison algorithms.en_US
dc.language.isoen_USen_US
dc.subjectLocalityen_US
dc.subjectSparse Codingen_US
dc.subjectMax-marginen_US
dc.titleLocality-constrained max-margin sparse codingen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.patcog.2016.12.015en_US
dc.identifier.journalPATTERN RECOGNITIONen_US
dc.citation.volume65en_US
dc.citation.spage285en_US
dc.citation.epage295en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000394197700024en_US
Appears in Collections:Articles