完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chi-Huaen_US
dc.contributor.authorWu, Chen-Lingen_US
dc.contributor.authorLo, Chi-Chunen_US
dc.contributor.authorHwang, Feng-Jangen_US
dc.date.accessioned2019-04-03T06:43:35Z-
dc.date.available2019-04-03T06:43:35Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2017.2743746en_US
dc.identifier.urihttp://hdl.handle.net/11536/146100-
dc.description.abstractThis paper proposes a classification algorithm based on ensemble neural networks. In the training phase, the proposed algorithm uses a random number of training data to develop multiple random artificial neural network (ANN) models until those ANN models converge. Those models with lower accuracy than the threshold are filtered out. The remaining highly accurate models will be used to predict the output in the testing phase. Meanwhile, the accuracy of ANN models is presented as a weighting value in the testing phase. In the testing phase, the testing data are loaded into the selected ANN models to predict the output class. The output values are multiplied by the corresponding weighting values of ANN models. Then the weighted average of the outputs can be obtained. Finally, the predicted output is converted into the predicted class. We design an augmented reality question answering system (AR-QAS) applying and implementing the proposed algorithm on mobile devices. AR-QAS offers an interactive user interface and automatically replies according to user's queries. By comparing with the logistic regression method and the ANN method, the experiment results demonstrate that the proposed algorithm offers the highest accuracy.en_US
dc.language.isoen_USen_US
dc.subjectData miningen_US
dc.subjectartificial neural networken_US
dc.subjectensemble neural networksen_US
dc.titleAn Augmented Reality Question Answering System Based on Ensemble Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2017.2743746en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume5en_US
dc.citation.spage17425en_US
dc.citation.epage17435en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000411322200058en_US
dc.citation.woscount2en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 90ed43e13248b41e3f53a30205168855.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。