完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYueh, Mei-Hengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWu, Chin-Tienen_US
dc.contributor.authorYau, Shing-Tungen_US
dc.date.accessioned2018-08-21T05:54:34Z-
dc.date.available2018-08-21T05:54:34Z-
dc.date.issued2017-10-01en_US
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10915-017-0414-yen_US
dc.identifier.urihttp://hdl.handle.net/11536/146124-
dc.description.abstractSurface parameterizations have been widely applied to digital geometry processing. In this paper, we propose an efficient conformal energy minimization (CEM) algorithm for computing conformal parameterizations of simply-connected open surfaces with a very small angular distortion and a highly improved computational efficiency. In addition, we generalize the proposed CEM algorithm to computing conformal parameterizations of multiply-connected surfaces. Furthermore, we prove the existence of a nontrivial accumulation point of the proposed CEM algorithm under some mild conditions. Several numerical results show the efficiency and robustness of the CEM algorithm comparing to the existing state-of-the-art algorithms. An application of the CEM on the surface morphing between simply-connected open surfaces is demonstrated thereafter. Thanks to the CEM algorithm, the whole computations for the surface morphing can be performed efficiently and robustly.en_US
dc.language.isoen_USen_US
dc.subjectConformal energy minimizationen_US
dc.subjectConformal parameterizationsen_US
dc.subjectSimply-connected open surfacesen_US
dc.subjectSurface morphingen_US
dc.titleAn Efficient Energy Minimization for Conformal Parameterizationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10915-017-0414-yen_US
dc.identifier.journalJOURNAL OF SCIENTIFIC COMPUTINGen_US
dc.citation.volume73en_US
dc.citation.spage203en_US
dc.citation.epage227en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000411591500009en_US
顯示於類別:期刊論文