Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chung, Hau-Rong | en_US |
dc.contributor.author | Hsieh, Te-Yung | en_US |
dc.contributor.author | Yang, Jinn-Chuang | en_US |
dc.date.accessioned | 2014-12-08T15:20:31Z | - |
dc.date.available | 2014-12-08T15:20:31Z | - |
dc.date.issued | 2011-12-15 | en_US |
dc.identifier.issn | 0045-7930 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.compfluid.2011.08.009 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/14616 | - |
dc.description.abstract | This study demonstrates an immersed boundary (IB) method which integrates a depth-averaged two dimensional flow model is proposed to tackle a typical fluid-solid phase problem in fluid dynamics field. The finite-difference scheme with curvilinear coordinate system is employed to discretize the shallow-water flow equations. Lagrangian markers and Eulerian grid are applied to portray the geometric contour of interior boundary and discretize the flow domain, respectively. The Dirac delta function is accordingly conducted to link both Lagrangian and Eulerian coordinate systems. The numerical simulations of single pier are performed and compared to examine the effect of marker's mesh width, grid size, and the various Dirac delta functions. Experimental data from literatures are compared with numerical results to justify the validity of the proposed IB model. To further demonstrate the model capability, the model is applied to the hypothetical cases of piers in parallel, and compared with theoretical results. (C) 2011 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Immersed boundary method | en_US |
dc.subject | Shallow-water flow | en_US |
dc.subject | Depth averaged | en_US |
dc.subject | Two-dimensional flow model | en_US |
dc.title | Two dimensional shallow-water flow model with immersed boundary method | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.compfluid.2011.08.009 | en_US |
dc.identifier.journal | COMPUTERS & FLUIDS | en_US |
dc.citation.volume | 51 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 145 | en_US |
dc.citation.epage | 156 | en_US |
dc.contributor.department | 防災與水環境研究中心 | zh_TW |
dc.contributor.department | Disaster Prevention and Water Environment Research Center | en_US |
dc.identifier.wosnumber | WOS:000296316600013 | - |
dc.citation.woscount | 0 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.