標題: | Two dimensional shallow-water flow model with immersed boundary method |
作者: | Chung, Hau-Rong Hsieh, Te-Yung Yang, Jinn-Chuang 防災與水環境研究中心 Disaster Prevention and Water Environment Research Center |
關鍵字: | Immersed boundary method;Shallow-water flow;Depth averaged;Two-dimensional flow model |
公開日期: | 15-十二月-2011 |
摘要: | This study demonstrates an immersed boundary (IB) method which integrates a depth-averaged two dimensional flow model is proposed to tackle a typical fluid-solid phase problem in fluid dynamics field. The finite-difference scheme with curvilinear coordinate system is employed to discretize the shallow-water flow equations. Lagrangian markers and Eulerian grid are applied to portray the geometric contour of interior boundary and discretize the flow domain, respectively. The Dirac delta function is accordingly conducted to link both Lagrangian and Eulerian coordinate systems. The numerical simulations of single pier are performed and compared to examine the effect of marker's mesh width, grid size, and the various Dirac delta functions. Experimental data from literatures are compared with numerical results to justify the validity of the proposed IB model. To further demonstrate the model capability, the model is applied to the hypothetical cases of piers in parallel, and compared with theoretical results. (C) 2011 Elsevier Ltd. All rights reserved. |
URI: | http://dx.doi.org/10.1016/j.compfluid.2011.08.009 http://hdl.handle.net/11536/14616 |
ISSN: | 0045-7930 |
DOI: | 10.1016/j.compfluid.2011.08.009 |
期刊: | COMPUTERS & FLUIDS |
Volume: | 51 |
Issue: | 1 |
起始頁: | 145 |
結束頁: | 156 |
顯示於類別: | 期刊論文 |