標題: A Rule-Based Symbiotic MOdified Differential Evolution for Self-Organizing Neuro-Fuzzy Systems
作者: Su, Miin-Tsair
Chen, Cheng-Hung
Lin, Cheng-Jian
Lin, Chin-Teng
電機工程學系
Department of Electrical and Computer Engineering
關鍵字: Neuro-fuzzy systems;Symbiotic evolution;Differential evolution;Entropy measure;Control
公開日期: 1-十二月-2011
摘要: This study proposes a Rule-Based Symbiotic MOdified Differential Evolution (RSMODE) for Self-Organizing Neuro-Fuzzy Systems (SONFS). The RSMODE adopts a multi-subpopulation scheme that uses each individual represents a single fuzzy rule and each individual in each subpopulation evolves separately. The proposed RSMODE learning algorithm consists of structure learning and parameter learning for the SONFS model. The structure learning can determine whether or not to generate a new rule-based subpopulation which satisfies the fuzzy partition of input variables using the entropy measure. The parameter learning combines two strategies including a subpopulation symbiotic evolution and a modified differential evolution. The RSMODE can automatically generate initial subpopulation and each individual in each subpopulation evolves separately using a modified differential evolution. Finally, the proposed method is applied in various simulations. Results of this study demonstrate the effectiveness of the proposed RSMODE learning algorithm. (C) 2011 Elsevier B. V. All rights reserved.
URI: http://dx.doi.org/10.1016/j.asoc.2011.06.015
http://hdl.handle.net/11536/14618
ISSN: 1568-4946
DOI: 10.1016/j.asoc.2011.06.015
期刊: APPLIED SOFT COMPUTING
Volume: 11
Issue: 8
起始頁: 4847
結束頁: 4858
顯示於類別:期刊論文


文件中的檔案:

  1. 000296539700039.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。