Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Ming Hsuen_US
dc.contributor.authorLin, Wen Yien_US
dc.contributor.authorZhou, Yu Chunen_US
dc.contributor.authorHsiao, Kuo Moen_US
dc.date.accessioned2014-12-08T15:20:32Z-
dc.date.available2014-12-08T15:20:32Z-
dc.date.issued2011-12-01en_US
dc.identifier.issn0020-7403en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.ijmecsci.2011.08.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/14626-
dc.description.abstractThe steady state deformation and infinitesimal free vibration around the steady state deformation of a rotating inclined Euler beam at constant angular velocity are investigated by the corotational finite element method combined with floating frame method. The element nodal forces are derived using the consistent second order linearization of the nonlinear beam theory, the d'Alembert principle and the virtual work principle in a current inertia element coordinates, which is coincident with a rotating element coordinate system constructed at the current configuration of the beam element. The rotating element coordinates rotate about the hub axis at the angular speed of the hub. The equations of motion of the system are defined in terms of an inertia global coordinate system, which is coincident with a rotating global coordinate system rigidly tied to the rotating hub. Numerical examples are studied to demonstrate the accuracy and efficiency of the proposed method and to investigate the steady state deformation and natural frequency of the rotating inclined beam. (C) 2011 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectRotating inclined beamen_US
dc.subjectSteady state deformationen_US
dc.subjectVibrationen_US
dc.subjectNatural frequencyen_US
dc.subjectCorotational formulationen_US
dc.subjectFinite element methoden_US
dc.titleInvestigation on steady state deformation and free vibration of a rotating inclined Euler beamen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijmecsci.2011.08.011en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF MECHANICAL SCIENCESen_US
dc.citation.volume53en_US
dc.citation.issue12en_US
dc.citation.spage1050en_US
dc.citation.epage1068en_US
dc.contributor.department機械工程學系zh_TW
dc.contributor.departmentDepartment of Mechanical Engineeringen_US
dc.identifier.wosnumberWOS:000296682200002-
dc.citation.woscount3-
Appears in Collections:Articles


Files in This Item:

  1. 000296682200002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.