完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Li-Chunen_US
dc.contributor.authorCheng, Shao-Hungen_US
dc.contributor.authorTsai, Ang-Hsunen_US
dc.date.accessioned2018-08-21T05:56:47Z-
dc.date.available2018-08-21T05:56:47Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2379-1268en_US
dc.identifier.urihttp://hdl.handle.net/11536/146642-
dc.description.abstractIn this paper we present a data-driven power control (DDPC) approach to improve total cell throughput and energy efficiency of ultra-dense femtocells. Although femtocells can increase the capacity and coverage in an indoor environment, ultra-dense femtocells may consume a lot of energy and generate severe interference. We investigate a data-driven clustering approach to reduce co-tier interference among femtocells in a dense deployment scenario. The proposed DDPC approach periodically collects the operation data of dense femtocells, including reference signal received power (RSRP) from each user, the transmission power and the number of users per femtocell, and so on. The collected data are processed via the affinity propagation (AP) clustering algorithm to determine the cluster centers to perform power control. The AP clustering algorithm can automatically determine appropriate the number of clusters and the corresponding cluster centers for various femtocell densities. Simulation results show that the proposed DDPC approach can increase 41% higher total cell throughput and 64% higher energy efficiency respectively, compared to the approach without power control in the ultra-dense femtocells.en_US
dc.language.isoen_USen_US
dc.subjectData-drivenen_US
dc.subjectaffinity propagation clusteringen_US
dc.subjectultra-dense femtocellsen_US
dc.subjectenergy efficiencyen_US
dc.titleData-Driven Power Control of Ultra-Dense Femtocells: A Clustering Based Approachen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2017 26TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE (WOCC)en_US
dc.contributor.department電機工程學系zh_TW
dc.contributor.departmentDepartment of Electrical and Computer Engineeringen_US
dc.identifier.wosnumberWOS:000403398400028en_US
顯示於類別:會議論文