完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Yen-Fuen_US
dc.contributor.authorChang, Chia-Hungen_US
dc.contributor.authorHung, Tsu-Changen_US
dc.contributor.authorLiu, Zhaopingen_US
dc.contributor.authorFang, Jiyeen_US
dc.contributor.authorJian, Wen-Binen_US
dc.date.accessioned2019-04-03T06:48:04Z-
dc.date.available2019-04-03T06:48:04Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn2210-9838en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.piutam.2017.03.034en_US
dc.identifier.urihttp://hdl.handle.net/11536/146848-
dc.description.abstractInP nanowires, synthesized through a self-seeded growth approach, are used in the fabrication of field-effect transistors which consist of source, drain, and back-gate electrodes. The weak gating voltage dependence implies low carrier concentrations whereas its behavior reveals native n-type doping in InP nanowires. These InP nanowire devices exhibit a vast variation of room-temperature resistance that raises a question about contact resistance. For devices of low room-temperature resistance, electron transport in InP nanowires is investigated using temperature dependent resistance in the temperature range between 80 and 300 K, and it can be analyzed using the model of thermal activation. For other devices of high room-temperature resistance, we take into account nanocontact resistance. Models of both Schottky contact and Mott's variable range hopping (VRH) are considered. The two resistances are connected in parallel to give total contact resistance of InP nanowire devices. After fitting experimental data by the proposed model, we estimate effective Schottky barriers and disorder contributions to nanocontact resistance. The effective Schottky barrier, and the nanocontact Schottky and Mott's VRH resistances are plotted as a function of the device room-temperature resistance which indicates the scale of disorder. Using room-temperature resistance of InP nanowire devices, the devices are classified into nanowire-or contact-dominated devices. The two different class of devices are used to check their photo-and gas-sensitivities. The contact-dominated InP nanowire devices show low dark current and low photocurrent as usual, but these contact-dominated devices give high ratio of photo-to dark-current. That result reveals a high photo-sensitivity for those devices of high nanocontact resistance. On the other hand, for gas sensing experiments, the contact-dominated devices show as well a high ratio of resistance under O-2 to that under N-2 gas exposure. (C) 2017 The Authors. Published by Elsevier B.V.en_US
dc.language.isoen_USen_US
dc.subjectnanowire electronicsen_US
dc.subjectnanocontacten_US
dc.subjectInP nanowireen_US
dc.subjectdisorderen_US
dc.titleNanocontact disorder in InP nanowire devices for the enhancement of visible light and oxygen gas sensitivitiesen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1016/j.piutam.2017.03.034en_US
dc.identifier.journal2016 IUTAM SYMPOSIUM ON NANOSCALE PHYSICAL MECHANICSen_US
dc.citation.volume21en_US
dc.citation.spage33en_US
dc.citation.epage39en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000416994600005en_US
dc.citation.woscount0en_US
顯示於類別:會議論文


文件中的檔案:

  1. fc4b878cb59bb0e440e71b5d897358ed.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。