Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hou-Yuen_US
dc.contributor.authorChen, Chun-Chien_US
dc.contributor.authorHsueh, Fu-Kuoen_US
dc.contributor.authorLiu, Jan-Tsaien_US
dc.contributor.authorShy, Shyi-Longen_US
dc.contributor.authorWu, Cheng-Sanen_US
dc.contributor.authorChien, Chao-Hsinen_US
dc.contributor.authorHu, Chenmingen_US
dc.contributor.authorHuang, Chien-Chaoen_US
dc.contributor.authorYang, Fu-Liangen_US
dc.date.accessioned2014-12-08T15:20:40Z-
dc.date.available2014-12-08T15:20:40Z-
dc.date.issued2011-11-01en_US
dc.identifier.issn0018-9383en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TED.2011.2163938en_US
dc.identifier.urihttp://hdl.handle.net/11536/14690-
dc.description.abstractFor more than 45 years, photon-and electron-sensitive materials have been used to produce pattern-transfer masks in the lithographic manufacturing of integrated circuits. With the semiconductor technology feature size continuing to shrink and the requirements of low-variability and low-cost manufacturing, optical lithography is driven to its limits. In this paper, we report a novel nanoinjection lithography (NInL) technique that employs electron-beam-assisted deposition to form pattern-transfer hard mask in a direct-write deposit approach. By scanning the 4.6-nm-diameter electron beam while injecting a suitable organometallic precursor gas around the location of e-beam and just above the substrate, we form a high-density (pitch: 40 nm) high-uniformity (3-sigma linewidth roughness: 2 nm) hard mask for subsequent etching without using proximity-effect correction techniques. Furthermore, this technique can also directly deposit a metal pattern for interconnect or a dielectric pattern without the need for separate metal or dielectric deposition, photoresist etch-mask, and etching processes. The NInL approach simplifies the hard-mask creation or even metal or dielectric pattern creation process modules from five or tens of steps to only a single step. Therefore, it saves both photomask making and wafer processing costs. In addition, room-temperature NInL deposition of conductor/dielectric materials enables the fabrication of small versatile devices and circuits. For demonstration, we fabricated a functional 16-nm six-transistor static random access memory (SRAM) cell (area: occupying only 0.039 mu m(2)), 43% the size of the smallest previously reported SRAM cell, using the FinFET structure and a dynamic V(dd) regulator approach. The NInL technique offers a new way of exploring low-volume high-value 16-nm complementary metal-oxide-semiconductor (CMOS) devices and circuit designs with minimal additional investment and obtains early access to extreme CMOS scaling.en_US
dc.language.isoen_USen_US
dc.subjectDirect-writeen_US
dc.subjectelectron beam (e-beam)en_US
dc.subjectFinFETen_US
dc.subjectnanoinjection lithography (NInL)en_US
dc.subjectstatic random access memory (SRAM)en_US
dc.titleA Novel Nanoinjection Lithography (NInL) Technology and Its Application for 16-nm Node Device Fabricationen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TED.2011.2163938en_US
dc.identifier.journalIEEE TRANSACTIONS ON ELECTRON DEVICESen_US
dc.citation.volume58en_US
dc.citation.issue11en_US
dc.citation.spage3678en_US
dc.citation.epage3686en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000296099400004-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000296099400004.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.