Full metadata record
DC FieldValueLanguage
dc.contributor.authorChan, Chia-Hsinen_US
dc.contributor.authorChen, Bo-Hsyuanen_US
dc.contributor.authorTsai, Wen-Jiinen_US
dc.date.accessioned2018-08-21T05:57:02Z-
dc.date.available2018-08-21T05:57:02Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-319-54407-6_10en_US
dc.identifier.urihttp://hdl.handle.net/11536/146961-
dc.description.abstractWith the explosive growth of photo uploading on the web, traditional photo album compression using individual image coding is needed to be improved to save the storage spaces. Recently, an advance technique of photo album compression via video compression is proposed which utilizes the similarity between photos to improve the compression performance. In this paper, we modify the original scheme to improve the compression performance when photos containing human beings. Experiment results show that the proposed method outperforms the state-of-the-art method by at most 12.7% of bit-rate savings for compressing photo albums with humans. Comparing with traditional JPEG compression, the proposed method achieves 70% to 85% of bit-rate savings.en_US
dc.language.isoen_USen_US
dc.titleLocal Feature-Based Photo Album Compression by Eliminating Redundancy of Human Partitionen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-319-54407-6_10en_US
dc.identifier.journalCOMPUTER VISION - ACCV 2016 WORKSHOPS, PT Ien_US
dc.citation.volume10116en_US
dc.citation.spage143en_US
dc.citation.epage158en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000425842200010en_US
Appears in Collections:Conferences Paper