完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, Guan-Huaen_US
dc.contributor.authorWang, Su-Meien_US
dc.contributor.authorHsu, Chung-Chuen_US
dc.date.accessioned2014-12-08T15:20:44Z-
dc.date.available2014-12-08T15:20:44Z-
dc.date.issued2011-10-01en_US
dc.identifier.issn0033-3123en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s11336-011-9227-3en_US
dc.identifier.urihttp://hdl.handle.net/11536/14749-
dc.description.abstractStatisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the conditional independence assumption underlying the latent variable model. The second stage then uses mixture modeling treating the class membership as known. The proposed approach is theoretically justifiable, directly checks the conditional independence assumption, and converges much faster than the full likelihood approach when analyzing high-dimensional data. This paper also develops a new classification rule based on latent variable models. The proposed classification procedure reduces the dimensionality of measured data and explicitly recognizes the heterogeneous nature of the complex disease, which makes it perfect for analyzing high-throughput genomic data. Simulation studies and real data analysis demonstrate the advantages of the proposed method.en_US
dc.language.isoen_USen_US
dc.subjectclassificationen_US
dc.subjectfinite mixtureen_US
dc.subjecthierarchical clusteringen_US
dc.subjecthigh-dimensional dataen_US
dc.subjectk-meansen_US
dc.subjectmicroarrayen_US
dc.subjecttwo-stage approachen_US
dc.titleOptimization-Based Model Fitting for Latent Class and Latent Profile Analysesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11336-011-9227-3en_US
dc.identifier.journalPSYCHOMETRIKAen_US
dc.citation.volume76en_US
dc.citation.issue4en_US
dc.citation.spage584en_US
dc.citation.epage611en_US
dc.contributor.department統計學研究所zh_TW
dc.contributor.departmentInstitute of Statisticsen_US
dc.identifier.wosnumberWOS:000296640200005-
dc.citation.woscount1-
顯示於類別:期刊論文


文件中的檔案:

  1. 000296640200005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。