完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Tiexiangen_US
dc.contributor.authorChu, Eric King-Wahen_US
dc.contributor.authorJuang, Jongen_US
dc.contributor.authorLin, Wen-Weien_US
dc.date.accessioned2014-12-08T15:20:45Z-
dc.date.available2014-12-08T15:20:45Z-
dc.date.issued2011-10-01en_US
dc.identifier.issn0272-4979en_US
dc.identifier.urihttp://dx.doi.org/10.1093/imanum/drq034en_US
dc.identifier.urihttp://hdl.handle.net/11536/14771-
dc.description.abstractFor the steady-state solution of a differential equation from a one-dimensional multistate model in transport theory, we shall derive and study a nonsymmetric algebraic Riccati equation B(-) -XF(-) -F(+) X + XB(+)X = 0, where F(+/-) = (I -F) D(+/-) and B(+/-) = BD(+/-) with positive diagonal matrices D(+/-) and possibly low-ranked matrices F and B. We prove the existence of the minimal positive solution X* under a set of physically reasonable assumptions and study its numerical computation by fixed-point iteration, Newton's method and the doubling algorithm. We shall also study several special cases. For example when B and F are low ranked then X* = Gamma circle(Sigma(r)(i=1)U(i)V(i)(T)) with low-ranked U(i) and V(i) that can be computed using more efficient iterative processes. Numerical examples will be given to illustrate our theoretical results.en_US
dc.language.isoen_USen_US
dc.subjectalgebraic Riccati equationen_US
dc.subjectdoubling algorithmen_US
dc.subjectfixed-point iterationen_US
dc.subjectNewton's methoden_US
dc.subjectreflectionen_US
dc.subjecttransport theoryen_US
dc.titleSolution of a nonsymmetric algebraic Riccati equation from a one-dimensional multistate transport modelen_US
dc.typeArticleen_US
dc.identifier.doi10.1093/imanum/drq034en_US
dc.identifier.journalIMA JOURNAL OF NUMERICAL ANALYSISen_US
dc.citation.volume31en_US
dc.citation.issue4en_US
dc.citation.spage1453en_US
dc.citation.epage1467en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000295987700008-
dc.citation.woscount3-
顯示於類別:期刊論文


文件中的檔案:

  1. 000295987700008.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。