完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Hung-Hsunen_US
dc.contributor.authorHu, Wen-Gueien_US
dc.contributor.authorLai, De-Janen_US
dc.contributor.authorLin, Song-Sunen_US
dc.date.accessioned2019-04-02T06:00:10Z-
dc.date.available2019-04-02T06:00:10Z-
dc.date.issued2014-08-28en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2014.06.015en_US
dc.identifier.urihttp://hdl.handle.net/11536/147797-
dc.description.abstractThis investigation studies nonemptiness problems of plane edge coloring with three colors. In the edge coloring (or Wang tiles) of a plane, unit squares with colored edges that have one of p colors are arranged side by side such that the touching edges of the adjacent tiles have the same colors. Given a basic set B of Wang tiles, the nonemptiness problem is to determine whether or not Sigma(B) not equal empty set , where Sigma(B) is the set of all global patterns on Z(2) that can be constructed from the Wang tiles in B. Wang's conjecture is that for any B of Wang tiles, Sigma (B) not equal empty set if and only if P(B) not equal empty set, where P(B) is the set of all periodic patterns on Z(2) that can be generated by the tiles in B. When p >= 5, Wang's conjecture is known to be wrong. When p = 2, the conjecture is true. This study proves that when p = 3, the conjecture is also true. If P(B) not equal empty set, then B has a subset B' of minimal cycle generators such that P(B') not equal empty set and P(B '') not equal empty set for B '' B'. This study demonstrates that the set C(3) of all minimal cycle generators contains 787, 605 members that can be classified into 2, 906 equivalence classes. N(3) is the set of all maximal non-cycle generators: if B is an element of N(3), then P(B) not equal empty set and P((B) over tilde) not equal empty set for (B) over tilde B. Wang's conjecture is shown to be true by proving that B is an element of N(3) implies Sigma(B) = empty set. (C) 2014 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectNonemptinessen_US
dc.subjectWang tilesen_US
dc.subjectDecidabilityen_US
dc.subjectEdge coloringen_US
dc.subjectPeriodic patternsen_US
dc.subjectTransition matrixen_US
dc.titleNonemptiness problems of Wang tiles with three colorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2014.06.015en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume547en_US
dc.citation.spage34en_US
dc.citation.epage45en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000340694000003en_US
dc.citation.woscount1en_US
顯示於類別:期刊論文