標題: 邊著色的空間熵以及最小週期生成
Spatial Entropy and Minimal Cycle of Edge Coloring
作者: 陳晉育
Chen, Jin-Yu
林松山
Lin, Song-Sun
應用數學系所
關鍵字: 邊著色;空間熵;Edge Coloring;Spatial Entropy
公開日期: 2009
摘要: 這篇研究在邊著色的平面磁磚的複雜性。在平面上對邊著色,邊有p種顏色選擇的單位方塊並肩排著,相鄰的邊必須要有一樣的顏色,王浩猜測任意可以拼成全平面的磁磚集合就可以週期性的拼成全平面。   在兩個顏色的邊著色時,胡文貴學長和林松山老師證明王浩的猜測是成立的,任意可以拼成全平面的磁磚集合就可以週期性的拼成全平面。更精確的說, 充要 有一個最小週期生成的子集。所有最小週期生成的集合 C(2) 包含38個元素。 本篇論文討論給定一個王浩磁磚(tiles)集合,熵(spatial entropy)是正值或零可由集合裡的最小週期生成子集(minimal cycles)決定;當集合中最小週期生成子集的子集合個數大於四組,除了O∪I∪J∪K以外,此集合有正的熵。
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079722501
http://hdl.handle.net/11536/45058
顯示於類別:畢業論文


文件中的檔案:

  1. 250101.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。