Full metadata record
DC FieldValueLanguage
dc.contributor.authorNjoo, Gunarto Sindoroen_US
dc.contributor.authorHsu, Kuo-Weien_US
dc.contributor.authorPeng, Wen-Chihen_US
dc.date.accessioned2019-04-02T06:00:00Z-
dc.date.available2019-04-02T06:00:00Z-
dc.date.issued2018-10-01en_US
dc.identifier.issn1574-1192en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.pmcj.2018.09.001en_US
dc.identifier.urihttp://hdl.handle.net/11536/148307-
dc.description.abstractThis paper particularly focuses on using the spatiotemporal data in the location-based social networks (LBSNs) to infer the social tie between two users. To do so, we first generate a co-location dataset by simulating the meeting event between users based on the time difference and spatial distance. Subsequently, we extract four key features from the generated dataset: diversity, popularity, duration, and stability. We propose a framework called SCI (Social Connection Inference) that integrates all derived features to distinguish real friends' meetings from strangers' coincidental meetings. Experiment results based on the three LBSN datasets prove the effectiveness of the proposed SCI framework by outperforming the state-of-the-art methods. In addition, various discussions on different aspects of the data are presented in this paper to yield insights into using generated co-location datasets. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectLocation-based social networken_US
dc.subjectData miningen_US
dc.subjectSocial inferenceen_US
dc.subjectFeature extractionen_US
dc.subjectCo-locationen_US
dc.titleDistinguishing friends from strangers in location-based social networks using co-locationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.pmcj.2018.09.001en_US
dc.identifier.journalPERVASIVE AND MOBILE COMPUTINGen_US
dc.citation.volume50en_US
dc.citation.spage114en_US
dc.citation.epage123en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000447436700007en_US
dc.citation.woscount1en_US
Appears in Collections:Articles