Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Chien Y.en_US
dc.contributor.authorFu, Sze M.en_US
dc.contributor.authorParashar, Paragen_US
dc.contributor.authorChen, Chun H.en_US
dc.contributor.authorAkbar, Chandnien_US
dc.contributor.authorLin, Albert S.en_US
dc.date.accessioned2019-04-02T06:00:58Z-
dc.date.available2019-04-02T06:00:58Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2018.2885024en_US
dc.identifier.urihttp://hdl.handle.net/11536/148665-
dc.description.abstractUsing machine intelligence on device and process performance prediction is an emerging methodology in the IC industry. While semiconductor technology computer-aided design (TCAD) has been researched and developed for over 30 years, it should contribute to or be used in conjunction with machine learning algorithms in solution finding procedure. Here, we propose an adaptive weighting neural network (AWNN) model that combines the advantages of statistical the machine learning model and the physical TCAD model. Using aspect ratio dependent etching as an example, our proposed AWNN outperforms conventional artificial neural network in terms of mean square errors in the test set where 5-10 times reduction is observed. The effectiveness of the TCAD AWNN model can be especially effective in the case of sampling over a vast sample space since the under-sampling problem can be compensated by the TCAD model. The large and nearly unbounded sample space is very common in IC technology, where cascaded and repeated process steps exist (similar to 150 process steps and similar to 20 masks for 90-nm CMOS process).en_US
dc.language.isoen_USen_US
dc.subjectMachine learning algorithmsen_US
dc.subjectartificial neural networksen_US
dc.subjectsemiconductor device manufactureen_US
dc.subjectsemiconductor process modelingen_US
dc.titleIntelligent Manufacturing: TCAD-Assisted Adaptive Weighting Neural Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2018.2885024en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume6en_US
dc.citation.spage78402en_US
dc.citation.epage78413en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000454757000001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles