Full metadata record
DC FieldValueLanguage
dc.contributor.authorLin, Shih-Weien_US
dc.contributor.authorLu, Chung-Chengen_US
dc.contributor.authorYing, Kuo-Chingen_US
dc.date.accessioned2019-04-02T06:00:58Z-
dc.date.available2019-04-02T06:00:58Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://dx.doi.org/10.1109/ACCESS.2018.2885137en_US
dc.identifier.urihttp://hdl.handle.net/11536/148667-
dc.description.abstractThis paper presents a cloud theory-based iterated greedy (CTIG) algorithm for solving the no-wait flowshop scheduling problem (NWFSP) with the objective of minimizing the sum of makespan and total weighted tardiness. The performance of the proposed CTIG algorithm is evaluated by comparing its computational results to those of the best-to-date meta-heuristic algorithm, particle swarm optimization (PSO), as presented in this paper. The experimental results concerning two sets of benchmark problem instances in this paper demonstrate that the CTIG algorithm obtains more (near) optimal solution in less computational time than the PSO algorithm. The computational results in this paper fill the research gap in the development of a novel algorithm to improve the solution quality in the case of the NWFSP with the objective of minimizing the sum of makespan and total weighted tardiness.en_US
dc.language.isoen_USen_US
dc.subjectSchedulingen_US
dc.subjectmetaheuristicsen_US
dc.subjectno-wait flowshopen_US
dc.subjectcloud theory-based iterated greedy algorithmen_US
dc.titleMinimizing the Sum of Makespan and Total Weighted Tardiness in a No-Wait Flowshopen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/ACCESS.2018.2885137en_US
dc.identifier.journalIEEE ACCESSen_US
dc.citation.volume6en_US
dc.citation.spage78666en_US
dc.citation.epage78677en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000454788800001en_US
dc.citation.woscount0en_US
Appears in Collections:Articles