完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLiao, Kang-Lingen_US
dc.contributor.authorShih, Chih-Wenen_US
dc.date.accessioned2014-12-08T15:20:53Z-
dc.date.available2014-12-08T15:20:53Z-
dc.date.issued2012-02-01en_US
dc.identifier.issn0022-247Xen_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jmaa.2011.08.011en_US
dc.identifier.urihttp://hdl.handle.net/11536/14878-
dc.description.abstractMarotto extended Li-Yorke's theorem on chaos from one-dimension to multi-dimension through introducing the notion of snapback repeller in 1978. Due to a technical flaw, he redefined snapback repeller in 2005 to validate this theorem. This presentation provides two methodologies to facilitate the application of Marotto's theorem. The first one is to estimate the radius of repelling neighborhood for a repelling fixed point. This estimation is of essential and practical significance as combined with numerical computations of snapback points. Secondly, we propose a sequential graphic-iteration scheme to construct homoclinic orbit for a repeller. This construction allows us to track the homoclinic orbit. Applications of the present methodologies with numerical computation to a chaotic neural network and a predator-prey model are demonstrated. (C) 2011 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectSnapback repelleren_US
dc.subjectHomoclinic orbiten_US
dc.subjectChaosen_US
dc.titleSnapback repellers and homoclinic orbits for multi-dimensional mapsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jmaa.2011.08.011en_US
dc.identifier.journalJOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONSen_US
dc.citation.volume386en_US
dc.citation.issue1en_US
dc.citation.spage387en_US
dc.citation.epage400en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000295563300034-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. 000295563300034.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。