完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Jen-Yenen_US
dc.contributor.authorYao, Ming-Jongen_US
dc.contributor.authorChu, Yi-Huaen_US
dc.date.accessioned2019-04-02T05:58:15Z-
dc.date.available2019-04-02T05:58:15Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn1348-9151en_US
dc.identifier.urihttp://hdl.handle.net/11536/148897-
dc.description.abstractThe problem of optimal Resource Allocation in Multimodal Stochastic Activity Networks (RAMSAN) has been studied for more than a decade. Many researchers proposed solution approaches, including dynamic programming and meta-heuristics, for solving the RAMSAN, and they commonly applied Monte Carlo Simulation (MCS) for evaluating the objective function values for the candidate solutions. However, since the computational load of MCS is very demanding, the solution approaches using MCS become impractical, even for only medium-size problems. In this study, we propose a Genetic Algorithm (GA) with an Optimal Computing Budget Allocation (OCBA) approach for solving the RAMSAN. We utilize the technique of OCBA to optimally allocate the computational budget among the candidate solutions in the evolutionary process of GA for evaluating their objective functions. Based on the benchmark instances in the literature, we demonstrate the proposed GA with OCBA is more effective than the other solution approaches in the literature and a GA without using OCBA.en_US
dc.language.isoen_USen_US
dc.subjectgenetic algorithmen_US
dc.subjectstochastic activity networksen_US
dc.subjectresource allocationen_US
dc.subjectMonte Carlo simulationen_US
dc.subjectoptimal computing budget allocationen_US
dc.titleSOLVING THE OPTIMAL RESOURCE ALLOCATION IN MULTIMODAL STOCHASTIC ACTIVITY NETWORKS USING AN OPTIMAL COMPUTING BUDGET ALLOCATION TECHNIQUEen_US
dc.typeArticleen_US
dc.identifier.journalPACIFIC JOURNAL OF OPTIMIZATIONen_US
dc.citation.volume14en_US
dc.citation.spage595en_US
dc.citation.epage619en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000459233300004en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文