完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHsu, Wei-Tingen_US
dc.contributor.authorQuan, Jiaminen_US
dc.contributor.authorWang, Chun-Yuanen_US
dc.contributor.authorLu, Li-Syuanen_US
dc.contributor.authorCampbell, Marshallen_US
dc.contributor.authorChang, Wen-Haoen_US
dc.contributor.authorLi, Lain-Jongen_US
dc.contributor.authorLi, Xiaoqinen_US
dc.contributor.authorShih, Chih-Kangen_US
dc.date.accessioned2019-04-02T05:58:45Z-
dc.date.available2019-04-02T05:58:45Z-
dc.date.issued2019-04-01en_US
dc.identifier.issn2053-1583en_US
dc.identifier.urihttp://dx.doi.org/10.1088/2053-1583/ab072aen_US
dc.identifier.urihttp://hdl.handle.net/11536/148995-
dc.description.abstractExcitons, bound electron-hole pairs in a 2D plane, dominate the optical properties of monolayer transition metal dichalcogenides (TMDs). A large exciton binding energy on the order of 0.5 eV was theoretically predicted and experimentally determined recently. These ultrastable excitons thus open an avenue to explore the exciton physics such as Bose-Einstein condensation and superfluidity at room temperature (Kasprzak et al 2006 Nature 443 409; Plumhof et al 2014 Nat. Mater. 13 247; Fogler et al 2014 Nat. Commun. 5 4555; Jiang and John 2014 Sci. Rep. 4 7432). Recent experiments further demonstrated the concept of Coulomb engineering via dielectric environments based on either solutions or few-layer graphene. However, the conducting nature of these dielectrics can lead to quenching of optical transitions. Thus, in order to utilize 'dielectric tuning' of the exciton binding energy and quasiparticle band gaps, one must use insulating dielectrics. Here, we investigate the impact of insulating dielectric environments on the exciton binding energy of monolayer WS2 and WSe2 by exciton Rydberg spectroscopy, in which the dielectric environment is systematically varied from kappa= 1.49 to 3.82. We found that, with increasing kappa value, the exciton binding energy and quasiparticle bandgap exhibit significant reductions. Quantitatively, our result follows the prediction of nonlocally-screened Keldysh potential very well. The fitted 2D polarizability, Chi(2D), agrees rather well with previous density function theory calculations. Their close agreement validates the nonlocally-screened Keldysh model which can be used to quantitatively predict the exciton binding energy for monolayer TMDs (and possibly other 2D materials) in different dielectric environments. Such a predictive model will play an important role for the design of van der Waals heterostructures and TMD-based optoelectronic devices.en_US
dc.language.isoen_USen_US
dc.subjecttransition metal dichalcogenideen_US
dc.subjectexciton binding energyen_US
dc.subjectdielectric engineeringen_US
dc.subjectmonolayer WS2en_US
dc.subjectmonolayer WSe2en_US
dc.titleDielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS2 and WSe2en_US
dc.typeArticleen_US
dc.identifier.doi10.1088/2053-1583/ab072aen_US
dc.identifier.journal2D MATERIALSen_US
dc.citation.volume6en_US
dc.contributor.department電子物理學系zh_TW
dc.contributor.departmentDepartment of Electrophysicsen_US
dc.identifier.wosnumberWOS:000460779600001en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文