完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTing, Huan-Chanen_US
dc.contributor.authorChang, Jeang-Linen_US
dc.contributor.authorChen, Yon-Pingen_US
dc.date.accessioned2014-12-08T15:20:59Z-
dc.date.available2014-12-08T15:20:59Z-
dc.date.issued2011-12-01en_US
dc.identifier.issn1598-6446en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s12555-011-0605-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/14912-
dc.description.abstractFor time-delay systems with mismatched disturbances and uncertainties, this paper develops an integral sliding mode control algorithm using output information only to stabilize the systems. An integral sliding surface is comprised of output signals and an auxiliary full-order compensator. The proposed output feedback sliding mode controller can satisfy the reaching and sliding condition and maintain the system on the sliding surface from the initial moment. When two specific algebraic Riccati inequalities have solutions, our method can guarantee the stability of the closed-loop system and satisfy the property of robust disturbance attenuation. Moreover, the design parameters of controller and compensator can be simultaneously determined by solutions to the algebraic Riccati inequalities. Finally, two numerical examples illustrate the applicability of the proposed scheme.en_US
dc.language.isoen_USen_US
dc.subjectFull-order compensatoren_US
dc.subjectmismatched disturbanceen_US
dc.subjectoutput feedbacken_US
dc.subjectsliding modeen_US
dc.titleApplying Output Feedback Integral Sliding Mode Controller to Uncertain Time-Delay Systems with Mismatched Disturbancesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12555-011-0605-5en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMSen_US
dc.citation.volume9en_US
dc.citation.issue6en_US
dc.citation.spage1056en_US
dc.citation.epage1066en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000297534300005-
dc.citation.woscount2-
顯示於類別:期刊論文


文件中的檔案:

  1. 000297534300005.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。