Full metadata record
DC FieldValueLanguage
dc.contributor.authorHou, RHen_US
dc.contributor.authorHong, TPen_US
dc.contributor.authorTseng, SSen_US
dc.contributor.authorKuo, SYen_US
dc.date.accessioned2019-04-02T06:00:24Z-
dc.date.available2019-04-02T06:00:24Z-
dc.date.issued1997-02-01en_US
dc.identifier.issn0168-7433en_US
dc.identifier.urihttp://dx.doi.org/10.1023/A:1005726727996en_US
dc.identifier.urihttp://hdl.handle.net/11536/149449-
dc.description.abstractKnowledge acquisition by interviewing a domain expert is one of the most problematic aspects of the development of expert systems. As an alternative, methods for inducing concept descriptions from examples have proven useful in eliminating this bottleneck. In this paper, we propose a probabilistic induction method (PIM), which is an improvement of the Chan and Wong method, for detecting relevant patterns implicit in a given data set. PIM uses the technique of residual analysis and several heuristics to effectively detect complex relevant patterns and to avoid the problem of combinatorial explosion. A reasonable trade-off between the induction time and the classification ratio is achieved. Moreover, PIM quickly classifies unknown objects using classification rules converted from the positively relevant patterns detected. Three experiments are conducted to confirm the validity of PIM.en_US
dc.language.isoen_USen_US
dc.subjectadjusted residualen_US
dc.subjectinductionen_US
dc.subjectprobabilisticen_US
dc.subjectrelevant patternen_US
dc.titleA new probabilistic induction methoden_US
dc.typeArticleen_US
dc.identifier.doi10.1023/A:1005726727996en_US
dc.identifier.journalJOURNAL OF AUTOMATED REASONINGen_US
dc.citation.volume18en_US
dc.citation.spage5en_US
dc.citation.epage24en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:A1997WK93400002en_US
dc.citation.woscount10en_US
Appears in Collections:Articles