完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.author | Wu, Pei Yuan | en_US |
| dc.contributor.author | Gau, Hwa-Long | en_US |
| dc.contributor.author | Tsai, Ming Cheng | en_US |
| dc.date.accessioned | 2019-04-02T05:59:41Z | - |
| dc.date.available | 2019-04-02T05:59:41Z | - |
| dc.date.issued | 2009-03-01 | en_US |
| dc.identifier.issn | 0024-3795 | en_US |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2007.11.017 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/149748 | - |
| dc.description.abstract | We show that if A is a C-0 contraction with minimal function phi such that w(A) = w(S(phi)), where w(.) denotes the numerical radius of an operator and S(phi) is the compression of the shift on (HH2)-H-2 circle minus phi, and B commutes with A, then w(AB) <= w(A)parallel to B parallel to. This is in contrast to the known fact that if A = S(phi) (even on dimensional space) and B commutes with A, then w(AB) <= w parallel to A parallel to w(B) is not necessarily true. As a a finite consequence, we have w(AB) <= w(A)parallel to B parallel to for any quadratic operatorA and any B commuting with A. (c) 2007 Elsevier Inc. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | Numerical range | en_US |
| dc.subject | Numerical radius | en_US |
| dc.subject | Compression of the shift | en_US |
| dc.subject | Quadratic operator | en_US |
| dc.title | Numerical radius inequality for C-0 contractions | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.laa.2007.11.017 | en_US |
| dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
| dc.citation.volume | 430 | en_US |
| dc.citation.spage | 1509 | en_US |
| dc.citation.epage | 1516 | en_US |
| dc.contributor.department | 應用數學系 | zh_TW |
| dc.contributor.department | Department of Applied Mathematics | en_US |
| dc.identifier.wosnumber | WOS:000263533400007 | en_US |
| dc.citation.woscount | 5 | en_US |
| 顯示於類別: | 期刊論文 | |

