Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hsu, Lih-Hsing | en_US |
dc.contributor.author | Cheng, Eddie | en_US |
dc.contributor.author | Liptak, Laszlo | en_US |
dc.contributor.author | Tan, Jimmy J. M. | en_US |
dc.contributor.author | Lin, Cheng-Kuan | en_US |
dc.contributor.author | Ho, Tung-Yang | en_US |
dc.date.accessioned | 2014-12-08T15:21:09Z | - |
dc.date.available | 2014-12-08T15:21:09Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.issn | 0020-7160 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/15012 | - |
dc.identifier.uri | http://dx.doi.org/10.1080/00207160.2011.638978 | en_US |
dc.description.abstract | The r-component connectivity kappa(r)(G) of the non- complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. So, kappa(2) is the usual connectivity. In this paper, we determine the r-component connectivity of the hypercube Q(n) for r = 2, 3, ..., n + 1, and we classify all the corresponding optimal solutions. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | hypercubes | en_US |
dc.subject | component connectivity | en_US |
dc.title | Component connectivity of the hypercubes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1080/00207160.2011.638978 | en_US |
dc.identifier.journal | INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS | en_US |
dc.citation.volume | 89 | en_US |
dc.citation.issue | 2 | en_US |
dc.citation.spage | 137 | en_US |
dc.citation.epage | 145 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000298350400002 | - |
dc.citation.woscount | 7 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.