Full metadata record
DC FieldValueLanguage
dc.contributor.authorHsu, Lih-Hsingen_US
dc.contributor.authorCheng, Eddieen_US
dc.contributor.authorLiptak, Laszloen_US
dc.contributor.authorTan, Jimmy J. M.en_US
dc.contributor.authorLin, Cheng-Kuanen_US
dc.contributor.authorHo, Tung-Yangen_US
dc.date.accessioned2014-12-08T15:21:09Z-
dc.date.available2014-12-08T15:21:09Z-
dc.date.issued2012en_US
dc.identifier.issn0020-7160en_US
dc.identifier.urihttp://hdl.handle.net/11536/15012-
dc.identifier.urihttp://dx.doi.org/10.1080/00207160.2011.638978en_US
dc.description.abstractThe r-component connectivity kappa(r)(G) of the non- complete graph G is the minimum number of vertices whose deletion results in a graph with at least r components. So, kappa(2) is the usual connectivity. In this paper, we determine the r-component connectivity of the hypercube Q(n) for r = 2, 3, ..., n + 1, and we classify all the corresponding optimal solutions.en_US
dc.language.isoen_USen_US
dc.subjecthypercubesen_US
dc.subjectcomponent connectivityen_US
dc.titleComponent connectivity of the hypercubesen_US
dc.typeArticleen_US
dc.identifier.doi10.1080/00207160.2011.638978en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF COMPUTER MATHEMATICSen_US
dc.citation.volume89en_US
dc.citation.issue2en_US
dc.citation.spage137en_US
dc.citation.epage145en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000298350400002-
dc.citation.woscount7-
Appears in Collections:Articles


Files in This Item:

  1. 000298350400002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.