Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, B. J.en_US
dc.contributor.authorWu, Ten-Mingen_US
dc.date.accessioned2019-04-03T06:39:37Z-
dc.date.available2019-04-03T06:39:37Z-
dc.date.issued2010-11-29en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.82.051133en_US
dc.identifier.urihttp://hdl.handle.net/11536/150233-
dc.description.abstractIn terms of the multifractal analysis, we investigate the characteristics of the instantaneous normal modes (INMs) at two mobility edges (MEs) of a simple fluid, where the locations of the MEs in the INM spectrum were identified in a previous work [B. J. Huang and T. M. Wu, Phys. Rev. E 79, 041105 (2009)]. The mass exponents and the singularity spectrum of the INMs are obtained by the box-size and system-size scalings under the typical average. The INM eigenvectors at a ME exhibit a multifractal nature and the multifractal INMs at each ME yield the same results in generalized fractal dimensions and singularity spectrum. Our results indicate that the singularity spectrum of the multifractal INMs agrees well with that of the Anderson model at the critical disorder. This good agreement provides numerical evidence for the universal multifractality at the localization-delocalization transition. For the multifractal INMs, the probability density function and the spatial correlation function of the squared vibrational amplitudes are also calculated. The relation between the probability density function and the singularity spectrum is examined numerically, so are the relations between the critical exponents of the spatial correlation function and the mass exponents of the multifractal INMs.en_US
dc.language.isoen_USen_US
dc.titleMultifractality of instantaneous normal modes at mobility edgesen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.82.051133en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume82en_US
dc.citation.issue5en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department物理研究所zh_TW
dc.contributor.departmentInstitute of Physicsen_US
dc.identifier.wosnumberWOS:000286736200003en_US
dc.citation.woscount6en_US
Appears in Collections:Articles


Files in This Item:

  1. 2c50fbc487b470dcaca8671efe619f3c.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.