Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Huang, Kou-Yuan | en_US |
dc.contributor.author | You, Jiun-De | en_US |
dc.contributor.author | Chen, Kai-Ju | en_US |
dc.contributor.author | Lai, Hung-Lin | en_US |
dc.contributor.author | Dong, An-Jin | en_US |
dc.date.accessioned | 2019-04-02T06:04:44Z | - |
dc.date.available | 2019-04-02T06:04:44Z | - |
dc.date.issued | 2006-01-01 | en_US |
dc.identifier.issn | 2161-4393 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/150891 | - |
dc.description.abstract | Hough transform neural network is adopted to detect line pattern of direct wave and hyperbola pattern of reflection wave in a seismogram. The distance calculation from point to hyperbola is calculated from the time difference. This calculation makes the parameter learning feasible. The neural network can calculate the total error for distance from point to patterns. The parameter learning rule is derived by gradient descent method to minimize the total error. Experimental results show that line and hyperbola can be detected in both simulated and real seismic data. The network can get a fast convergence. The detection results can automatically provide a reference and improve seismic interpretation. | en_US |
dc.language.iso | en_US | en_US |
dc.title | Hough transform neural network for seismic pattern detection | en_US |
dc.type | Proceedings Paper | en_US |
dc.identifier.journal | 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10 | en_US |
dc.citation.spage | 2453 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000245125904047 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Conferences Paper |