Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorYou, Jiun-Deen_US
dc.contributor.authorChen, Kai-Juen_US
dc.contributor.authorLai, Hung-Linen_US
dc.contributor.authorDong, An-Jinen_US
dc.date.accessioned2019-04-02T06:04:44Z-
dc.date.available2019-04-02T06:04:44Z-
dc.date.issued2006-01-01en_US
dc.identifier.issn2161-4393en_US
dc.identifier.urihttp://hdl.handle.net/11536/150891-
dc.description.abstractHough transform neural network is adopted to detect line pattern of direct wave and hyperbola pattern of reflection wave in a seismogram. The distance calculation from point to hyperbola is calculated from the time difference. This calculation makes the parameter learning feasible. The neural network can calculate the total error for distance from point to patterns. The parameter learning rule is derived by gradient descent method to minimize the total error. Experimental results show that line and hyperbola can be detected in both simulated and real seismic data. The network can get a fast convergence. The detection results can automatically provide a reference and improve seismic interpretation.en_US
dc.language.isoen_USen_US
dc.titleHough transform neural network for seismic pattern detectionen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10en_US
dc.citation.spage2453en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000245125904047en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper