完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLi, Yu Tingen_US
dc.contributor.authorGuo, Jiun Inen_US
dc.date.accessioned2019-04-02T06:04:48Z-
dc.date.available2019-04-02T06:04:48Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2381-5779en_US
dc.identifier.urihttp://hdl.handle.net/11536/150937-
dc.description.abstractTo detect product error and modify the product error, most industry are using human eyes. However, it is not only costs time but also costs money. Our purpose is to develop a model to detect the PCB board errors and draw the bounding boxes. The model is going to be developed with a pre-trained model VGG16 and data collected from Adventech corp. The error types of training data have been speared into five error types (Bridge, Appearance, Empty, Solder_ball, Solder_balls), where the highest AP result of these classes is over 90%.en_US
dc.language.isoen_USen_US
dc.titleA VGG-16 based Faster RCNN Model for PCB Error Inspection in Industrial AOI Applicationsen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN (ICCE-TW)en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000454897600118en_US
dc.citation.woscount0en_US
顯示於類別:會議論文