完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, Tsaipeien_US
dc.contributor.authorShu, Kai-Chenen_US
dc.contributor.authorChang, Chia-Haoen_US
dc.contributor.authorChen, Yi-Fuen_US
dc.date.accessioned2019-04-02T06:04:31Z-
dc.date.available2019-04-02T06:04:31Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2376-6816en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TAAI.2018.00025en_US
dc.identifier.urihttp://hdl.handle.net/11536/151039-
dc.description.abstractPedestrian attribute recognition has many applications in surveillance and attribute based query, tracking, and person re-identification. The recent trend in deep-learning based pedestrian attribute recognition is to use a shared CNN backbone for feature extraction and multiple subsequent branches for the individual branches. While this allows the end-to-end learning to simultaneously recognize multiple attributes, the data imbalance problem of most attributes becomes a challenge that has not been studied sufficiently for this application. This paper presents studies on how the cost adjustment method affects several common evaluation metrics. We also propose a two-stage training procedure, where an additional fine-tuning stage on the classifier layers only with class-balanced data is shown to improve recognition performances.en_US
dc.language.isoen_USen_US
dc.subjectHuman attribute recognitionen_US
dc.subjectpedestrian attribute recognitionen_US
dc.subjectmulti-label classificationen_US
dc.subjectdata imbalanceen_US
dc.subjectclassification evaluation metricsen_US
dc.titleON THE EFFECT OF DATA IMBALANCE FOR MULTI-LABEL PEDESTRIAN ATTRIBUTE RECOGNITIONen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1109/TAAI.2018.00025en_US
dc.identifier.journal2018 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI)en_US
dc.citation.spage74en_US
dc.citation.epage77en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000458676200016en_US
dc.citation.woscount0en_US
顯示於類別:會議論文