標題: An approach to mining the multi-relational imbalanced database
作者: Lee, Chien-I
Tsai, Cheng-Jung
Wu, Tong-Qin
Yang, Wei-Pang
資訊工程學系
Department of Computer Science
關鍵字: data mining;classification;imbalance;relational database
公開日期: 4-五月-2008
摘要: The class imbalance problem is an important issue in classification of Data mining. For example, in the applications of fraudulent telephone calls, telecommunications management, and rare diagnoses, users would be more interested in the minority than the majority. Although there are many proposed algorithms to solve the imbalanced problem, they are unsuitable to be directly applied on a multi-relational database. Nevertheless, many data nowadays such as financial transactions and medical anamneses are stored in a multi-relational database rather than a single data sheet. On the other hand, the widely used multi-relational classification approaches, such as TILDE, FOIL and CrossMine, are insensitive to handle the imbalanced databases. In this paper, we propose a multi-relational g-mean decision tree algorithm to solve the imbalanced problem in a multi-relational database. As shown in our experiments, our approach can more accurately mine a multi-relational imbalanced database. (c) 2007 Elsevier Ltd. All rights reserved.
URI: http://dx.doi.org/10.1016/j.eswa.2007.05.048
http://hdl.handle.net/11536/9352
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2007.05.048
期刊: EXPERT SYSTEMS WITH APPLICATIONS
Volume: 34
Issue: 4
起始頁: 3021
結束頁: 3032
顯示於類別:期刊論文


文件中的檔案:

  1. 000253521900080.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。