Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, I-Weien_US
dc.contributor.authorChuang, Shang-Yien_US
dc.contributor.authorWu, Wen-Junen_US
dc.contributor.authorFang, Wai-Chien_US
dc.date.accessioned2019-04-02T06:04:47Z-
dc.date.available2019-04-02T06:04:47Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2163-4025en_US
dc.identifier.urihttp://hdl.handle.net/11536/151053-
dc.description.abstractThis study proposed an efficient hardware architecture design of Ensemble Empirical Mode Decomposition (EEMD) processor for the signal analysis of Electrocardiography (ECG). The proposed processor is implemented in an on-board Xilinx FPGA for on-line signal processing of the non-linear and non-stationary signal. The EEMD method is appropriate to analyze the non-linear ECG signal with assisting white noise and decompose the signal into 8 sets of Intrinsic Mode Functions (IMFs). The experimental result shows that the mode mixing problem, which exists in the Empirical Mode Decomposition (EMD) method, solved by the proposed EEMD processor. The study solves the obstacle of mode mixing and achieves high accuracy with data error < 4.7x10(-5). This approach can effectively analyze the non-linear and non-stationary biomedical signal and facilitate cardiovascular diseases diagnosis and long-term monitoring.en_US
dc.language.isoen_USen_US
dc.subjectElectrocardiographyen_US
dc.subjectField Programmable Gate Array (FPGA)en_US
dc.subjectEnsemble Empirical Mode Decomposition (EEMD)en_US
dc.titleAn Efficient Hardware Architecture Design of EEMD Processor for Electrocardiography Signalen_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTHen_US
dc.citation.spage463en_US
dc.citation.epage466en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000458897900122en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper