Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chang, Che-Chia | en_US |
| dc.contributor.author | Chen, Pin-Chun | en_US |
| dc.contributor.author | Hudec, Boris | en_US |
| dc.contributor.author | Liu, Po-Tsun | en_US |
| dc.contributor.author | Hou, Tuo-Hung | en_US |
| dc.date.accessioned | 2019-04-02T06:04:37Z | - |
| dc.date.available | 2019-04-02T06:04:37Z | - |
| dc.date.issued | 2018-01-01 | en_US |
| dc.identifier.issn | 2380-9248 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/151104 | - |
| dc.description.abstract | This work provides a complete framework, including device, architecture, and algorithm, for implementing bio-inspired supervised spiking neural networks (SNNs) on hardware. An analog synapse with atypical dual bipolar resistive-switching (D-BRS) modes demonstrates interchangeable Hebbian spiking-timing-dependent plasticity (STDP) and anti-Hebbian STDP, and it is capable of implementing supervised ReSuMe SNNs in crossbar arrays. By using an "exchange" update scheme, accurate supervised learning (similar to 96% for MNIST) is achieved in a compact network. | en_US |
| dc.language.iso | en_US | en_US |
| dc.title | Interchangeable Hebbian and Anti-Hebbian STDP Applied to Supervised Learning in Spiking Neural Network | en_US |
| dc.type | Proceedings Paper | en_US |
| dc.identifier.journal | 2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | en_US |
| dc.contributor.department | 電子工程學系及電子研究所 | zh_TW |
| dc.contributor.department | 光電工程學系 | zh_TW |
| dc.contributor.department | Department of Electronics Engineering and Institute of Electronics | en_US |
| dc.contributor.department | Department of Photonics | en_US |
| dc.identifier.wosnumber | WOS:000459882300167 | en_US |
| dc.citation.woscount | 0 | en_US |
| Appears in Collections: | Conferences Paper | |

