Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Che-Chiaen_US
dc.contributor.authorChen, Pin-Chunen_US
dc.contributor.authorHudec, Borisen_US
dc.contributor.authorLiu, Po-Tsunen_US
dc.contributor.authorHou, Tuo-Hungen_US
dc.date.accessioned2019-04-02T06:04:37Z-
dc.date.available2019-04-02T06:04:37Z-
dc.date.issued2018-01-01en_US
dc.identifier.issn2380-9248en_US
dc.identifier.urihttp://hdl.handle.net/11536/151104-
dc.description.abstractThis work provides a complete framework, including device, architecture, and algorithm, for implementing bio-inspired supervised spiking neural networks (SNNs) on hardware. An analog synapse with atypical dual bipolar resistive-switching (D-BRS) modes demonstrates interchangeable Hebbian spiking-timing-dependent plasticity (STDP) and anti-Hebbian STDP, and it is capable of implementing supervised ReSuMe SNNs in crossbar arrays. By using an "exchange" update scheme, accurate supervised learning (similar to 96% for MNIST) is achieved in a compact network.en_US
dc.language.isoen_USen_US
dc.titleInterchangeable Hebbian and Anti-Hebbian STDP Applied to Supervised Learning in Spiking Neural Networken_US
dc.typeProceedings Paperen_US
dc.identifier.journal2018 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.department光電工程學系zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.contributor.departmentDepartment of Photonicsen_US
dc.identifier.wosnumberWOS:000459882300167en_US
dc.citation.woscount0en_US
Appears in Collections:Conferences Paper