Full metadata record
DC FieldValueLanguage
dc.contributor.authorYen, Te Juien_US
dc.contributor.authorGismatulin, Andreien_US
dc.contributor.authorVolodin, Vladimiren_US
dc.contributor.authorGritsenko, Vladimiren_US
dc.contributor.authorChin, Alberten_US
dc.date.accessioned2019-05-02T00:25:51Z-
dc.date.available2019-05-02T00:25:51Z-
dc.date.issued2019-04-16en_US
dc.identifier.issn2045-2322en_US
dc.identifier.urihttp://dx.doi.org/10.1038/s41598-019-42706-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/151601-
dc.description.abstractTraditional Resistive Random Access Memory (RRAM) is a metal-insulator-metal (MIM) structure, in which metal oxide is usually used as an insulator. The charge transport mechanism of traditional RRAM is attributed to a metallic filament inside the RRAM. In this paper, we demonstrated a novel RRAM device with no metal inside. The N+-Si/SiOx/P+-Si combination forms a N+IP+ diode structure that is different from traditional MIM RRAM. A large high-resistance/low-resistance window of 1.9 x 10(4) was measured at room temperature. A favorable retention memory window of 1.2 x 10(3) was attained for 10(4)s at 85 degrees C. The charge transport mechanism of virgin, high- and low-resistance states can be well modeled by the single Shklovskii-Efros percolation mechanism rather than the charge transport in metallic filament. X-ray photoelectron spectroscopy demonstrated that the value of x in SiOx was 0.62, which provided sufficient oxygen vacancies for set/reset RRAM functions.en_US
dc.language.isoen_USen_US
dc.titleAll Nonmetal Resistive Random Access Memoryen_US
dc.typeArticleen_US
dc.identifier.doi10.1038/s41598-019-42706-9en_US
dc.identifier.journalSCIENTIFIC REPORTSen_US
dc.citation.volume9en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000464652400015en_US
dc.citation.woscount0en_US
Appears in Collections:Articles