Title: Micro-Electrode-Dot-Array Digital Microfluidic Biochips: Technology, Design Automation, and Test Techniques
Authors: Zhong, Zhanwei
Li, Zipeng
Chakrabarty, Krishnendu
Ho, Tsung-Yi
Lee, Chen-Yi
電子工程學系及電子研究所
Department of Electronics Engineering and Institute of Electronics
Keywords: Computer-aided design (CAD);digital microfluidics;error recovery;micro-electrode-dot-array
Issue Date: 1-Apr-2019
Abstract: Digital microfluidic biochips (DMFBs) are being increasingly used for DNA sequencing, point-of-care clinical diagnostics, and immunoassays. DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been proposed, and fundamental droplet manipulations, e.g., droplet mixing and splitting, have also been experimentally demonstrated on MEDA biochips. There can be thousands of microelectrodes on a single MEDA biochip, and the fine-grained control of nanoliter volumes of biochemical samples and reagents is also enabled by this technology. MEDA biochips offer the benefits of real-time sensitivity, lower cost, easy system integration with CMOS modules, and full automation. This review paper first describes recent design tools for high-level synthesis and optimization of map bioassay protocols on a MEDA biochip. It then presents recent advances in scheduling of fluidic operations, placement of fluidic modules, droplet-size-aware routing, adaptive error recovery, sample preparation, and various testing techniques. With the help of these tools, biochip users can concentrate on the development of nanoscale bioassays, leaving details of chip optimization and implementation to software tools.
URI: http://dx.doi.org/10.1109/TBCAS.2018.2886952
http://hdl.handle.net/11536/151628
ISSN: 1932-4545
DOI: 10.1109/TBCAS.2018.2886952
Journal: IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS
Volume: 13
Issue: 2
Begin Page: 292
End Page: 313
Appears in Collections:Articles