完整後設資料紀錄
DC 欄位語言
dc.contributor.authorYueh, Mei-Hengen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWu, Chin-Tienen_US
dc.contributor.authorYau, Shing-Tungen_US
dc.date.accessioned2019-05-02T00:25:57Z-
dc.date.available2019-05-02T00:25:57Z-
dc.date.issued2019-03-01en_US
dc.identifier.issn0885-7474en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10915-018-0822-7en_US
dc.identifier.urihttp://hdl.handle.net/11536/151669-
dc.description.abstractSurface parameterizations have been widely applied to computer graphics and digital geometry processing. In this paper, we propose a novel stretch energy minimization (SEM) algorithm for the computation of equiareal parameterizations of simply connected open surfaces with very small area distortions and highly improved computational efficiencies. In addition, the existence of nontrivial limit points of the SEM algorithm is guaranteed under some mild assumptions of the mesh quality. Numerical experiments indicate that the accuracy, effectiveness, and robustness of the proposed SEM algorithm outperform the other state-of-the-art algorithms. Applications of the SEM on surface remeshing, registration and morphing for simply connected open surfaces are demonstrated thereafter. Thanks to the SEM algorithm, the computation for these applications can be carried out efficiently and reliably.en_US
dc.language.isoen_USen_US
dc.subjectEquiareal parameterizationsen_US
dc.subjectSimply connected open surfacesen_US
dc.subjectSurface remeshingen_US
dc.subjectSurface registrationen_US
dc.titleA Novel Stretch Energy Minimization Algorithm for Equiareal Parameterizationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10915-018-0822-7en_US
dc.identifier.journalJOURNAL OF SCIENTIFIC COMPUTINGen_US
dc.citation.volume78en_US
dc.citation.issue3en_US
dc.citation.spage1353en_US
dc.citation.epage1386en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000463230400003en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文